BENVENUTO   |   Login   |   Registrati   |
Imposta Come Homepage   |   Ricerca Avanzata  CERCA  

IDEE/ Da Godel a Benedetto XVI, così la logica smonta il relativismo

Pubblicazione:

Raffaello, La scuola di Atene  Raffaello, La scuola di Atene

Eppure per lui la logica dice che in questa impresa fondazionale consiste la vera intrapresa e il vero senso della matematica e, di conseguenza, di tutta la scienza matematica e, in ultima analisi della conoscenza umana come tale. Una precisazione va fatta: qui “evidenti” non va inteso come espressione di ingenuità filosofica, ma nel senso rigorosamente razionale di “logicamente irrinunciabili”.

 

E qui, ancora più sorprendentemente Gödel (e con lui logici matematici moderni) sembrano incontrarsi con la logica antica che risale ad Aristotele (384-322 a.C.) e ai relativi Commenti di Tommaso d’Aquino (1225 ca-1274), che chiamava “principi primi” quelle proposizioni che vengono affermate nel momento stesso in cui si cerca di negarle, per cui negarle conduce a contraddizione: «Anche se non si possono dimostrare direttamente, tuttavia il filosofo primo offre una sorta di dimostrazione nel senso che, per poterli contraddire, coloro che li vogliono rifiutare, devono ammetterne la validità, pur non accettandoli per evidenza» (Commento ai Secondi analitici di Aristotele, Libro I, lettura 20, n. 5).

 

E insieme alle “proposizioni” o “enunciati” primi ci sono anche delle “nozioni prime” (tra quelle che noi oggi chiamiamo “concetti primitivi” di una teoria) che non possono essere scelte convenzionalmente, essendo irrinunciabili per il pensare in quanto tale. Dice a questo proposito ancora Tommaso: «Ogni scienza affronta il problema dei principi comuni delle cose; ed è necessario che lo faccia, perché la verità dei principi comuni emerge con chiarezza dalla conoscenza dei termini comuni, come ente e non ente, tutto e parti».

 

Clicca >> qui sotto per continuare l'articolo

 



< PAG. PREC.   PAG. SUCC. >